
CSE 7/5337: Information Retrieval and Web Search
Introduction and Boolean Retrieval (IIR 1)

Michael Hahsler

Southern Methodist University

These slides are largely based on the slides by Hinrich Schütze
Institute for Natural Language Processing, University of Stuttgart

http://informationretrieval.org

Spring 2012

Hahsler (SMU) CSE 7/5337 Spring 2012 1 / 35

http://informationretrieval.org


Take-away

What is Information Retrieval?

Boolean Retrieval: Design and data structures of a simple information
retrieval system

Hahsler (SMU) CSE 7/5337 Spring 2012 2 / 35



Outline

1 Introduction

2 Inverted index

3 Processing Boolean queries

Hahsler (SMU) CSE 7/5337 Spring 2012 3 / 35



Definition of information retrieval

Information retrieval (IR) is finding material (usually documents) of an
unstructured nature (usually text) that satisfies an information need from
within large collections (usually stored on computers).

Hahsler (SMU) CSE 7/5337 Spring 2012 4 / 35







Boolean retrieval

The Boolean model is arguably the simplest model to base an
information retrieval system on.

Queries are Boolean expressions, e.g., Caesar and Brutus

The seach engine returns all documents that satisfy the Boolean
expression.

Does Google use the Boolean model?

Hahsler (SMU) CSE 7/5337 Spring 2012 7 / 35



Does Google use the Boolean model?

On Google, the default interpretation of a query [w1 w2 . . . wn] is w1

AND w2 AND . . . AND wn

Cases where you get hits that do not contain one of the wi :
I anchor text
I page contains variant of wi (morphology, spelling correction, synonym)
I long queries (n large)
I boolean expression generates very few hits

Simple Boolean vs. Ranking of result set

I Simple Boolean retrieval returns matching documents in no particular
order.

I Google (and most well designed Boolean engines) rank the result set –
they rank good hits (according to some estimator of relevance) higher
than bad hits.

Hahsler (SMU) CSE 7/5337 Spring 2012 8 / 35



Outline

1 Introduction

2 Inverted index

3 Processing Boolean queries

Hahsler (SMU) CSE 7/5337 Spring 2012 9 / 35



Unstructured data in 1650: Shakespeare

Hahsler (SMU) CSE 7/5337 Spring 2012 10 / 35



Unstructured data in 1650

Which plays of Shakespeare contain the words Brutus and
Caesar, but not Calpurnia?

One could grep all of Shakespeare’s plays for Brutus and Caesar,
then strip out lines containing Calpurnia.

Why is grep not the solution?
I Slow (for large collections)
I grep is line-oriented, IR is document-oriented
I “not Calpurnia” is non-trivial
I Other operations (e.g., find the word Romans near countryman)

not feasible

Hahsler (SMU) CSE 7/5337 Spring 2012 11 / 35



Term-document incidence matrix

Anthony Julius The Hamlet Othello Macbeth . . .
and Caesar Tempest

Cleopatra
Anthony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1
Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0
mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0
. . .
Entry is 1 if term occurs. Example: Calpurnia occurs in Julius Caesar.
Entry is 0 if term doesn’t occur. Example: Calpurnia doesn’t occur in The tempest.

Hahsler (SMU) CSE 7/5337 Spring 2012 12 / 35



Incidence vectors

So we have a 0/1 vector for each term.

To answer the query Brutus and Caesar and not Calpurnia:
I Take the vectors for Brutus, Caesar, and Calpurnia
I Complement the vector of Calpurnia
I Do a (bitwise) and on the three vectors
I 110100 and 110111 and 101111 = 100100

Hahsler (SMU) CSE 7/5337 Spring 2012 13 / 35



0/1 vector for Brutus

Anthony Julius The Hamlet Othello Macbeth . . .
and Caesar Tempest

Cleopatra
Anthony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1
Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0
mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0
. . .

result: 1 0 0 1 0 0

Hahsler (SMU) CSE 7/5337 Spring 2012 14 / 35



Answers to query

Anthony and Cleopatra, Act III, Scene ii
Agrippa [Aside to Domitius Enobarbus]: Why, Enobarbus,

When Antony found Julius Caesar dead,
He cried almost to roaring; and he wept
When at Philippi he found Brutus slain.

Hamlet, Act III, Scene ii
Lord Polonius: I did enact Julius Caesar: I was killed i’ the

Capitol; Brutus killed me.

Hahsler (SMU) CSE 7/5337 Spring 2012 15 / 35



Bigger collections

Consider N = 106 documents, each with about 1000 tokens

⇒ total of 109 tokens

On average 6 bytes per token, including spaces and punctuation ⇒
size of document collection is about 6 · 109 = 6 GB

Assume there are M = 500,000 distinct terms in the collection

(Notice that we are making a term/token distinction.)

Hahsler (SMU) CSE 7/5337 Spring 2012 16 / 35



Can’t build the incidence matrix

M = 500,000× 106 = half a trillion 0s and 1s.

But the matrix has no more than one billion 1s.
I Matrix is extremely sparse.

What is a better representations?
I We only record the 1s.

Hahsler (SMU) CSE 7/5337 Spring 2012 17 / 35



Inverted Index

For each term t, we store a list of all documents that contain t.

Brutus −→ 1 2 4 11 31 45 173 174

Caesar −→ 1 2 4 5 6 16 57 132 . . .

Calpurnia −→ 2 31 54 101

...︸ ︷︷ ︸ ︸ ︷︷ ︸
dictionary postings

Hahsler (SMU) CSE 7/5337 Spring 2012 18 / 35



Inverted index construction

1 Collect the documents to be indexed:

Friends, Romans, countrymen. So let it be with Caesar . . .

2 Tokenize the text, turning each document into a list of tokens:

Friends Romans countrymen So . . .

3 Do linguistic preprocessing, producing a list of normalized tokens,

which are the indexing terms: friend roman countryman so . . .

4 Index the documents that each term occurs in by creating an inverted
index, consisting of a dictionary and postings.

Hahsler (SMU) CSE 7/5337 Spring 2012 19 / 35



Tokenization and preprocessing
Doc 1. I did enact Julius Caesar: I
was killed i’ the Capitol; Brutus killed
me.
Doc 2. So let it be with Caesar. The
noble Brutus hath told you Caesar
was ambitious:

=⇒
Doc 1. i did enact julius caesar i was
killed i’ the capitol brutus killed me
Doc 2. so let it be with caesar the
noble brutus hath told you caesar was
ambitious

Hahsler (SMU) CSE 7/5337 Spring 2012 20 / 35



Generate postings

Doc 1. i did enact julius caesar i was
killed i’ the capitol brutus killed me
Doc 2. so let it be with caesar the
noble brutus hath told you caesar was
ambitious

=⇒

term docID
i 1
did 1
enact 1
julius 1
caesar 1
i 1
was 1
killed 1
i’ 1
the 1
capitol 1
brutus 1
killed 1
me 1
so 2
let 2
it 2
be 2
with 2
caesar 2
the 2
noble 2
brutus 2
hath 2
told 2
you 2
caesar 2
was 2
ambitious 2

Hahsler (SMU) CSE 7/5337 Spring 2012 21 / 35



Sort postings
term docID
i 1
did 1
enact 1
julius 1
caesar 1
i 1
was 1
killed 1
i’ 1
the 1
capitol 1
brutus 1
killed 1
me 1
so 2
let 2
it 2
be 2
with 2
caesar 2
the 2
noble 2
brutus 2
hath 2
told 2
you 2
caesar 2
was 2
ambitious 2

=⇒

term docID
ambitious 2
be 2
brutus 1
brutus 2
capitol 1
caesar 1
caesar 2
caesar 2
did 1
enact 1
hath 1
i 1
i 1
i’ 1
it 2
julius 1
killed 1
killed 1
let 2
me 1
noble 2
so 2
the 1
the 2
told 2
you 2
was 1
was 2
with 2

Hahsler (SMU) CSE 7/5337 Spring 2012 22 / 35



Create postings lists, determine document frequency
term docID
ambitious 2
be 2
brutus 1
brutus 2
capitol 1
caesar 1
caesar 2
caesar 2
did 1
enact 1
hath 1
i 1
i 1
i’ 1
it 2
julius 1
killed 1
killed 1
let 2
me 1
noble 2
so 2
the 1
the 2
told 2
you 2
was 1
was 2
with 2

=⇒

term doc. freq. → postings lists

ambitious 1 → 2

be 1 → 2

brutus 2 → 1 → 2

capitol 1 → 1

caesar 2 → 1 → 2

did 1 → 1

enact 1 → 1

hath 1 → 2

i 1 → 1

i’ 1 → 1

it 1 → 2

julius 1 → 1

killed 1 → 1

let 1 → 2

me 1 → 1

noble 1 → 2

so 1 → 2

the 2 → 1 → 2

told 1 → 2

you 1 → 2

was 2 → 1 → 2

with 1 → 2

Hahsler (SMU) CSE 7/5337 Spring 2012 23 / 35



Split the result into dictionary and postings file

Brutus −→ 1 2 4 11 31 45 173 174

Caesar −→ 1 2 4 5 6 16 57 132 . . .

Calpurnia −→ 2 31 54 101

...︸ ︷︷ ︸ ︸ ︷︷ ︸
dictionary postings file

Hahsler (SMU) CSE 7/5337 Spring 2012 24 / 35



Outline

1 Introduction

2 Inverted index

3 Processing Boolean queries

Hahsler (SMU) CSE 7/5337 Spring 2012 25 / 35



Simple conjunctive query (two terms)

Consider the query: Brutus AND Calpurnia

To find all matching documents using inverted index:
1 Locate Brutus in the dictionary
2 Retrieve its postings list from the postings file
3 Locate Calpurnia in the dictionary
4 Retrieve its postings list from the postings file
5 Intersect the two postings lists
6 Return intersection to user

Hahsler (SMU) CSE 7/5337 Spring 2012 26 / 35



Intersecting two postings lists

Brutus −→ 1 → 2 → 4 → 11 → 31 → 45 → 173 → 174

Calpurnia −→ 2 → 31 → 54 → 101

Intersection =⇒ 2 → 31

This is linear in the length of the postings lists.

Note: This only works if postings lists are sorted.

Hahsler (SMU) CSE 7/5337 Spring 2012 27 / 35



Intersecting two postings lists

Intersect(p1, p2)
1 answer ← 〈 〉
2 while p1 6= nil and p2 6= nil
3 do if docID(p1) = docID(p2)
4 then Add(answer , docID(p1))
5 p1 ← next(p1)
6 p2 ← next(p2)
7 else if docID(p1) < docID(p2)
8 then p1 ← next(p1)
9 else p2 ← next(p2)

10 return answer

Hahsler (SMU) CSE 7/5337 Spring 2012 28 / 35



Query processing: Exercise

france −→ 1 → 2 → 3 → 4 → 5 → 7 → 8 → 9 → 11 → 12 → 13 → 14 → 15

paris −→ 2 → 6 → 10 → 12 → 14

lear −→ 12 → 15

Compute hit list for ((paris AND NOT france) OR lear)

Hahsler (SMU) CSE 7/5337 Spring 2012 29 / 35



Boolean queries

The Boolean retrieval model can answer any query that is a Boolean
expression.

I Boolean queries are queries that use and, or and not to join query
terms.

I Views each document as a set of terms.
I Is precise: Document matches condition or not.

Primary commercial retrieval tool for 3 decades

Many professional searchers (e.g., lawyers) still like Boolean queries.
I You know exactly what you are getting.

Many search systems you use are also Boolean: spotlight, email,
intranet etc.

Hahsler (SMU) CSE 7/5337 Spring 2012 30 / 35



Commercially successful Boolean retrieval: Westlaw

Largest commercial legal search service in terms of the number of
paying subscribers

Over half a million subscribers performing millions of searches a day
over tens of terabytes of text data

The service was started in 1975.

In 2005, Boolean search (called “Terms and Connectors” by Westlaw)
was still the default, and used by a large percentage of users . . .

. . . although ranked retrieval has been available since 1992.

Hahsler (SMU) CSE 7/5337 Spring 2012 31 / 35



Westlaw: Example queries

Information need: Information on the legal theories involved in preventing
the disclosure of trade secrets by employees formerly employed by a
competing company

Query: “trade secret” /s disclos! /s prevent /s employe!

Information need: Requirements for disabled people to be able to access a
workplace

Query: disab! /p access! /s work-site work-place (employment /3 place)

Information need: Cases about a host’s responsibility for drunk guests

Query: host! /p (responsib! liab!) /p (intoxicat! drunk!) /p guest

Hahsler (SMU) CSE 7/5337 Spring 2012 32 / 35



Westlaw: Comments

Proximity operators: /3 = within 3 words, /s = within a sentence, /p
= within a paragraph

Space is disjunction, not conjunction! (This was the default in search
pre-Google.)

Long, precise queries: incrementally developed, not like web search

Why professional searchers often like Boolean search: precision,
transparency, control

When are Boolean queries the best way of searching? Depends on:
information need, searcher, document collection, . . .

Hahsler (SMU) CSE 7/5337 Spring 2012 33 / 35



Take-away

What is Information Retrieval?

Boolean Retrieval: Design and data structures of a simple information
retrieval system

Hahsler (SMU) CSE 7/5337 Spring 2012 34 / 35



Resources

Chapter 1 of IIR

Hahsler (SMU) CSE 7/5337 Spring 2012 35 / 35


	Introduction
	Inverted index
	Processing Boolean queries

