
CSE 7/5337: Information Retrieval and Web Search
Scoring, term weighting, the vector space model (IIR 6)

Michael Hahsler

Southern Methodist University

These slides are largely based on the slides by Hinrich Schütze
Institute for Natural Language Processing, University of Stuttgart

http://informationretrieval.org

Spring 2012

Hahsler (SMU) CSE 7/5337 Spring 2012 1 / 67

http://informationretrieval.org

Overview

1 Recap

2 Why ranked retrieval?

3 Term frequency

4 tf-idf weighting

5 The vector space model

Hahsler (SMU) CSE 7/5337 Spring 2012 2 / 67

Outline

1 Recap

2 Why ranked retrieval?

3 Term frequency

4 tf-idf weighting

5 The vector space model

Hahsler (SMU) CSE 7/5337 Spring 2012 3 / 67

Inverted index

For each term t, we store a list of all documents that contain t.

Brutus −→ 1 2 4 11 31 45 173 174

Caesar −→ 1 2 4 5 6 16 57 132 . . .

Calpurnia −→ 2 31 54 101

...︸ ︷︷ ︸ ︸ ︷︷ ︸
dictionary postings

Hahsler (SMU) CSE 7/5337 Spring 2012 4 / 67

Intersecting two postings lists

Brutus −→ 1 → 2 → 4 → 11 → 31 → 45 → 173 → 174

Calpurnia −→ 2 → 31 → 54 → 101

Intersection =⇒ 2 → 31

Hahsler (SMU) CSE 7/5337 Spring 2012 5 / 67

Constructing the inverted index: Sort postings
term docID
I 1
did 1
enact 1
julius 1
caesar 1
I 1
was 1
killed 1
i’ 1
the 1
capitol 1
brutus 1
killed 1
me 1
so 2
let 2
it 2
be 2
with 2
caesar 2
the 2
noble 2
brutus 2
hath 2
told 2
you 2
caesar 2
was 2
ambitious 2

=⇒

term docID
ambitious 2
be 2
brutus 1
brutus 2
capitol 1
caesar 1
caesar 2
caesar 2
did 1
enact 1
hath 1
I 1
I 1
i’ 1
it 2
julius 1
killed 1
killed 1
let 2
me 1
noble 2
so 2
the 1
the 2
told 2
you 2
was 1
was 2
with 2

Hahsler (SMU) CSE 7/5337 Spring 2012 6 / 67

Westlaw: Example queries

Information need: Information on the legal theories involved in preventing
the disclosure of trade secrets by employees formerly employed by a
competing company

Query: “trade secret” /s disclos! /s prevent /s employe!

Information need: Requirements for disabled people to be able to access a
workplace

Query: disab! /p access! /s work-site work-place (employment /3 place)

Information need: Cases about a host’s responsibility for drunk guests

Query: host! /p (responsib! liab!) /p (intoxicat! drunk!) /p guest

Hahsler (SMU) CSE 7/5337 Spring 2012 7 / 67

Does Google use the Boolean model?

On Google, the default interpretation of a query [w1 w2 . . . wn] is w1

AND w2 AND . . . AND wn

Cases where you get hits that do not contain one of the wi :
I anchor text
I page contains variant of wi (morphology, spelling correction, synonym)
I long queries (n large)
I boolean expression generates very few hits

Simple Boolean vs. Ranking of result set

I Simple Boolean retrieval returns matching documents in no particular
order.

I Google (and most well designed Boolean engines) rank the result set –
they rank good hits (according to some estimator of relevance) higher
than bad hits.

Hahsler (SMU) CSE 7/5337 Spring 2012 8 / 67

Type/token distinction

Token – an instance of a word or term occurring in a document

Type – an equivalence class of tokens

In June, the dog likes to chase the cat in the barn.

12 word tokens, 9 word types

Hahsler (SMU) CSE 7/5337 Spring 2012 9 / 67

Problems in tokenization

What are the delimiters? Space? Apostrophe? Hyphen?

For each of these: sometimes they delimit, sometimes they don’t.

No whitespace in many languages! (e.g., Chinese)

No whitespace in Dutch, German, Swedish compounds
(Lebensversicherungsgesellschaftsangestellter)

Hahsler (SMU) CSE 7/5337 Spring 2012 10 / 67

Problems with equivalence classing

A term is an equivalence class of tokens.

How do we define equivalence classes?

Numbers (3/20/91 vs. 20/3/91)

Case folding

Stemming, Porter stemmer

Morphological analysis: inflectional vs. derivational

Equivalence classing problems in other languages
I More complex morphology than in English
I Finnish: a single verb may have 12,000 different forms
I Accents, umlauts

Hahsler (SMU) CSE 7/5337 Spring 2012 11 / 67

Positional indexes

Postings lists in a nonpositional index: each posting is just a docID
Postings lists in a positional index: each posting is a docID and a list of positions
Example query: “to1 be2 or3 not4 to5 be6”

to, 993427:
〈 1: 〈7, 18, 33, 72, 86, 231〉;

2: 〈1, 17, 74, 222, 255〉;
4: 〈8, 16, 190, 429, 433〉;
5: 〈363, 367〉;
7: 〈13, 23, 191〉; . . . 〉

be, 178239:
〈 1: 〈17, 25〉;

4: 〈17, 191, 291, 430, 434〉;
5: 〈14, 19, 101〉; . . . 〉

Document 4 is a match!

Hahsler (SMU) CSE 7/5337 Spring 2012 12 / 67

Positional indexes

With a positional index, we can answer
I phrase queries
I proximity queries

Hahsler (SMU) CSE 7/5337 Spring 2012 13 / 67

Take-away today

Ranking search results: why it is important (as opposed to just
presenting a set of unordered Boolean results)

Term frequency: This is a key ingredient for ranking.

Tf-idf ranking: best known traditional ranking scheme

Vector space model: One of the most important formal models for
information retrieval (along with Boolean and probabilistic models)

Hahsler (SMU) CSE 7/5337 Spring 2012 14 / 67

Outline

1 Recap

2 Why ranked retrieval?

3 Term frequency

4 tf-idf weighting

5 The vector space model

Hahsler (SMU) CSE 7/5337 Spring 2012 15 / 67

Ranked retrieval

Thus far, our queries have been Boolean.
I Documents either match or don’t.

Good for expert users with precise understanding of their needs and of
the collection.

Also good for applications: Applications can easily consume 1000s of
results.

Not good for the majority of users

Most users are not capable of writing Boolean queries . . .
I . . . or they are, but they think it’s too much work.

Most users don’t want to wade through 1000s of results.

This is particularly true of web search.

Hahsler (SMU) CSE 7/5337 Spring 2012 16 / 67

Problem with Boolean search: Feast or famine

Boolean queries often result in either too few (=0) or too many
(1000s) results.

Query 1 (boolean conjunction): [standard user dlink 650]
I → 200,000 hits – feast

Query 2 (boolean conjunction): [standard user dlink 650 no card
found]

I → 0 hits – famine

In Boolean retrieval, it takes a lot of skill to come up with a query
that produces a manageable number of hits.

Hahsler (SMU) CSE 7/5337 Spring 2012 17 / 67

Feast or famine: No problem in ranked retrieval

With ranking, large result sets are not an issue.

Just show the top 10 results

Doesn’t overwhelm the user

Premise: the ranking algorithm works: More relevant results are
ranked higher than less relevant results.

Hahsler (SMU) CSE 7/5337 Spring 2012 18 / 67

Scoring as the basis of ranked retrieval

We wish to rank documents that are more relevant higher than
documents that are less relevant.

How can we accomplish such a ranking of the documents in the
collection with respect to a query?

Assign a score to each query-document pair, say in [0, 1].

This score measures how well document and query “match”.

Hahsler (SMU) CSE 7/5337 Spring 2012 19 / 67

Query-document matching scores

How do we compute the score of a query-document pair?

Let’s start with a one-term query.

If the query term does not occur in the document: score should be 0.

The more frequent the query term in the document, the higher the
score

We will look at a number of alternatives for doing this.

Hahsler (SMU) CSE 7/5337 Spring 2012 20 / 67

Take 1: Jaccard coefficient

A commonly used measure of overlap of two sets

Let A and B be two sets

Jaccard coefficient:

jaccard(A,B) =
|A ∩ B|
|A ∪ B|

(A 6= ∅ or B 6= ∅)
jaccard(A,A) = 1

jaccard(A,B) = 0 if A ∩ B = 0

A and B don’t have to be the same size.

Always assigns a number between 0 and 1.

Hahsler (SMU) CSE 7/5337 Spring 2012 21 / 67

Jaccard coefficient: Example

What is the query-document match score that the Jaccard coefficient
computes for:

I Query: “ides of March”
I Document “Caesar died in March”
I jaccard(q, d) = 1/6

Hahsler (SMU) CSE 7/5337 Spring 2012 22 / 67

What’s wrong with Jaccard?

It doesn’t consider term frequency (how many occurrences a term
has).

Rare terms are more informative than frequent terms. Jaccard does
not consider this information.

We need a more sophisticated way of normalizing for the length of a
document.

Later in this lecture, we’ll use |A ∩ B|/
√
|A ∪ B| (cosine) . . .

. . . instead of |A ∩ B|/|A ∪ B| (Jaccard) for length normalization.

Hahsler (SMU) CSE 7/5337 Spring 2012 23 / 67

Outline

1 Recap

2 Why ranked retrieval?

3 Term frequency

4 tf-idf weighting

5 The vector space model

Hahsler (SMU) CSE 7/5337 Spring 2012 24 / 67

Binary incidence matrix

Anthony Julius The Hamlet Othello Macbeth . . .
and Caesar Tempest

Cleopatra
Anthony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1
Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0
mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0
. . .

Each document is represented as a binary vector ∈ {0, 1}|V |.

Hahsler (SMU) CSE 7/5337 Spring 2012 25 / 67

Count matrix

Anthony Julius The Hamlet Othello Macbeth . . .
and Caesar Tempest

Cleopatra
Anthony 157 73 0 0 0 1
Brutus 4 157 0 2 0 0
Caesar 232 227 0 2 1 5
Calpurnia 0 10 0 0 0 0
Cleopatra 57 0 0 0 0 0
mercy 2 0 3 8 5 8
worser 2 0 1 1 1 0
. . .

Each document is now represented as a count vector ∈ N|V |.

Hahsler (SMU) CSE 7/5337 Spring 2012 26 / 67

Bag of words model

We do not consider the order of words in a document.

John is quicker than Mary and Mary is quicker than John are
represented the same way.

This is called a bag of words model.

In a sense, this is a step back: The positional index was able to
distinguish these two documents.

We will look at “recovering” positional information later in this
course.

For now: bag of words model

Hahsler (SMU) CSE 7/5337 Spring 2012 27 / 67

Term frequency tf

The term frequency tft,d of term t in document d is defined as the
number of times that t occurs in d .

We want to use tf when computing query-document match scores.

But how?

Raw term frequency is not what we want because:

A document with tf = 10 occurrences of the term is more relevant
than a document with tf = 1 occurrence of the term.

But not 10 times more relevant.

Relevance does not increase proportionally with term frequency.

Hahsler (SMU) CSE 7/5337 Spring 2012 28 / 67

Instead of raw frequency: Log frequency weighting

The log frequency weight of term t in d is defined as follows

wt,d =

{
1 + log10 tft,d if tft,d > 0
0 otherwise

tft,d → wt,d :
0 → 0, 1 → 1, 2 → 1.3, 10 → 2, 1000 → 4, etc.

Score for a document-query pair: sum over terms t in both q and d :
tf-matching-score(q, d) =

∑
t∈q∩d(1 + log tft,d)

The score is 0 if none of the query terms is present in the document.

Hahsler (SMU) CSE 7/5337 Spring 2012 29 / 67

Exercise

Compute the Jaccard matching score and the tf matching score for
the following query-document pairs.

q: [information on cars] d: “all you’ve ever wanted to know about
cars”

q: [information on cars] d: “information on trucks, information on
planes, information on trains”

q: [red cars and red trucks] d: “cops stop red cars more often”

Hahsler (SMU) CSE 7/5337 Spring 2012 30 / 67

Outline

1 Recap

2 Why ranked retrieval?

3 Term frequency

4 tf-idf weighting

5 The vector space model

Hahsler (SMU) CSE 7/5337 Spring 2012 31 / 67

Frequency in document vs. frequency in collection

In addition, to term frequency (the frequency of the term in the
document) . . .

. . . we also want to use the frequency of the term in the collection for
weighting and ranking.

Hahsler (SMU) CSE 7/5337 Spring 2012 32 / 67

Desired weight for rare terms

Rare terms are more informative than frequent terms.

Consider a term in the query that is rare in the collection (e.g.,
arachnocentric).

A document containing this term is very likely to be relevant.

→ We want high weights for rare terms like arachnocentric.

Hahsler (SMU) CSE 7/5337 Spring 2012 33 / 67

Desired weight for frequent terms

Frequent terms are less informative than rare terms.

Consider a term in the query that is frequent in the collection (e.g.,
good, increase, line).

A document containing this term is more likely to be relevant than a
document that doesn’t . . .

. . . but words like good, increase and line are not sure indicators
of relevance.

→ For frequent terms like good, increase, and line, we want
positive weights . . .

. . . but lower weights than for rare terms.

Hahsler (SMU) CSE 7/5337 Spring 2012 34 / 67

Document frequency

We want high weights for rare terms like arachnocentric.

We want low (positive) weights for frequent words like good,
increase, and line.

We will use document frequency to factor this into computing the
matching score.

The document frequency is the number of documents in the
collection that the term occurs in.

Hahsler (SMU) CSE 7/5337 Spring 2012 35 / 67

idf weight

dft is the document frequency, the number of documents that t
occurs in.

dft is an inverse measure of the informativeness of term t.

We define the idf weight of term t as follows:

idft = log10
N

dft

(N is the number of documents in the collection.)

idft is a measure of the informativeness of the term.

[log N/dft] instead of [N/dft] to “dampen” the effect of idf

Note that we use the log transformation for both term frequency and
document frequency.

Hahsler (SMU) CSE 7/5337 Spring 2012 36 / 67

Examples for idf

Compute idft using the formula: idft = log10
1,000,000

dft

term dft idft
calpurnia 1 6
animal 100 4
sunday 1000 3
fly 10,000 2
under 100,000 1
the 1,000,000 0

Hahsler (SMU) CSE 7/5337 Spring 2012 37 / 67

Effect of idf on ranking

idf affects the ranking of documents for queries with at least two
terms.

For example, in the query “arachnocentric line”, idf weighting
increases the relative weight of arachnocentric and decreases the
relative weight of line.

idf has little effect on ranking for one-term queries.

Hahsler (SMU) CSE 7/5337 Spring 2012 38 / 67

Collection frequency vs. Document frequency

word collection frequency document frequency

insurance 10440 3997
try 10422 8760

Collection frequency of t: number of tokens of t in the collection

Document frequency of t: number of documents t occurs in

Why these numbers?

Which word is a better search term (and should get a higher weight)?

This example suggests that df (and idf) is better for weighting than cf
(and “icf”).

Hahsler (SMU) CSE 7/5337 Spring 2012 39 / 67

tf-idf weighting

The tf-idf weight of a term is the product of its tf weight and its idf
weight.

wt,d = (1 + log tft,d) · log
N

dft

tf-weight

idf-weight

Best known weighting scheme in information retrieval

Note: the “-” in tf-idf is a hyphen, not a minus sign!

Alternative names: tf.idf, tf x idf

Hahsler (SMU) CSE 7/5337 Spring 2012 40 / 67

Summary: tf-idf

Assign a tf-idf weight for each term t in each document d :
wt,d = (1 + log tft,d) · log N

dft
The tf-idf weight . . .

I . . . increases with the number of occurrences within a document. (term
frequency)

I . . . increases with the rarity of the term in the collection. (inverse
document frequency)

Hahsler (SMU) CSE 7/5337 Spring 2012 41 / 67

Exercise: Term, collection and document frequency

Quantity Symbol Definition

term frequency tft,d number of occurrences of t in
d

document frequency dft number of documents in the
collection that t occurs in

collection frequency cft total number of occurrences of
t in the collection

Relationship between df and cf?

Relationship between tf and cf?

Relationship between tf and df?

Hahsler (SMU) CSE 7/5337 Spring 2012 42 / 67

Outline

1 Recap

2 Why ranked retrieval?

3 Term frequency

4 tf-idf weighting

5 The vector space model

Hahsler (SMU) CSE 7/5337 Spring 2012 43 / 67

Binary incidence matrix

Anthony Julius The Hamlet Othello Macbeth . . .
and Caesar Tempest

Cleopatra
Anthony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1
Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0
mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0
. . .

Each document is represented as a binary vector ∈ {0, 1}|V |.

Hahsler (SMU) CSE 7/5337 Spring 2012 44 / 67

Count matrix

Anthony Julius The Hamlet Othello Macbeth . . .
and Caesar Tempest

Cleopatra
Anthony 157 73 0 0 0 1
Brutus 4 157 0 2 0 0
Caesar 232 227 0 2 1 5
Calpurnia 0 10 0 0 0 0
Cleopatra 57 0 0 0 0 0
mercy 2 0 3 8 5 8
worser 2 0 1 1 1 0
. . .

Each document is now represented as a count vector ∈ N|V |.

Hahsler (SMU) CSE 7/5337 Spring 2012 45 / 67

Binary → count → weight matrix

Anthony Julius The Hamlet Othello Macbeth . . .
and Caesar Tempest

Cleopatra
Anthony 5.25 3.18 0.0 0.0 0.0 0.35
Brutus 1.21 6.10 0.0 1.0 0.0 0.0
Caesar 8.59 2.54 0.0 1.51 0.25 0.0
Calpurnia 0.0 1.54 0.0 0.0 0.0 0.0
Cleopatra 2.85 0.0 0.0 0.0 0.0 0.0
mercy 1.51 0.0 1.90 0.12 5.25 0.88
worser 1.37 0.0 0.11 4.15 0.25 1.95
. . .

Each document is now represented as a real-valued vector of tf-idf weights ∈ R|V |.

Hahsler (SMU) CSE 7/5337 Spring 2012 46 / 67

Documents as vectors

Each document is now represented as a real-valued vector of tf-idf
weights ∈ R|V |.
So we have a |V |-dimensional real-valued vector space.

Terms are axes of the space.

Documents are points or vectors in this space.

Very high-dimensional: tens of millions of dimensions when you apply
this to web search engines

Each vector is very sparse - most entries are zero.

Hahsler (SMU) CSE 7/5337 Spring 2012 47 / 67

Queries as vectors

Key idea 1: do the same for queries: represent them as vectors in the
high-dimensional space

Key idea 2: Rank documents according to their proximity to the query

proximity = similarity

proximity ≈ negative distance

Recall: We’re doing this because we want to get away from the
you’re-either-in-or-out, feast-or-famine Boolean model.

Instead: rank relevant documents higher than nonrelevant documents

Hahsler (SMU) CSE 7/5337 Spring 2012 48 / 67

How do we formalize vector space similarity?

First cut: (negative) distance between two points

(= distance between the end points of the two vectors)

Euclidean distance?

Euclidean distance is a bad idea . . .

. . . because Euclidean distance is large for vectors of different lengths.

Hahsler (SMU) CSE 7/5337 Spring 2012 49 / 67

Why distance is a bad idea

The Euclidean distance of ~q and ~d2 is large although the distribution of
terms in the query q and the distribution of terms in the document d2 are
very similar.

Questions about basic vector space setup?

Hahsler (SMU) CSE 7/5337 Spring 2012 50 / 67

Use angle instead of distance

Rank documents according to angle with query

Thought experiment: take a document d and append it to itself. Call
this document d ′. d ′ is twice as long as d .

“Semantically” d and d ′ have the same content.

The angle between the two documents is 0, corresponding to maximal
similarity . . .

. . . even though the Euclidean distance between the two documents
can be quite large.

Hahsler (SMU) CSE 7/5337 Spring 2012 51 / 67

From angles to cosines

The following two notions are equivalent.
I Rank documents according to the angle between query and document

in decreasing order
I Rank documents according to cosine(query,document) in increasing

order

Cosine is a monotonically decreasing function of the angle for the
interval [0◦, 180◦]

Hahsler (SMU) CSE 7/5337 Spring 2012 52 / 67

Cosine

Hahsler (SMU) CSE 7/5337 Spring 2012 53 / 67

Length normalization

How do we compute the cosine?

A vector can be (length-) normalized by dividing each of its

components by its length – here we use the L2 norm: ||x ||2 =
√∑

i x2
i

This maps vectors onto the unit sphere . . .

. . . since after normalization: ||x ||2 =
√∑

i x2
i = 1.0

As a result, longer documents and shorter documents have weights of
the same order of magnitude.

Effect on the two documents d and d ′ (d appended to itself) from
earlier slide: they have identical vectors after length-normalization.

Hahsler (SMU) CSE 7/5337 Spring 2012 54 / 67

Cosine similarity between query and document

cos(~q, ~d) = sim(~q, ~d) =
~q · ~d
|~q||~d |

=

∑|V |
i=1 qidi√∑|V |

i=1 q2
i

√∑|V |
i=1 d2

i

qi is the tf-idf weight of term i in the query.

di is the tf-idf weight of term i in the document.

|~q| and |~d | are the lengths of ~q and ~d .

This is the cosine similarity of ~q and ~d or, equivalently, the
cosine of the angle between ~q and ~d .

Hahsler (SMU) CSE 7/5337 Spring 2012 55 / 67

Cosine for normalized vectors

For normalized vectors, the cosine is equivalent to the dot product or
scalar product.

cos(~q, ~d) = ~q · ~d =
∑

i qi · di

I (if ~q and ~d are length-normalized).

Hahsler (SMU) CSE 7/5337 Spring 2012 56 / 67

Cosine similarity illustrated

Hahsler (SMU) CSE 7/5337 Spring 2012 57 / 67

Cosine: Example

How similar are
these novels?

SaS: Sense and
Sensibility

PaP: Pride and
Prejudice

WH: Wuthering
Heights

term frequencies (counts)

term SaS PaP WH

affection 115 58 20
jealous 10 7 11
gossip 2 0 6
wuthering 0 0 38

Hahsler (SMU) CSE 7/5337 Spring 2012 58 / 67

Cosine: Example

term frequencies (counts)

term SaS PaP WH

affection 115 58 20
jealous 10 7 11
gossip 2 0 6
wuthering 0 0 38

log frequency weighting

term SaS PaP WH

affection 3.06 2.76 2.30
jealous 2.0 1.85 2.04
gossip 1.30 0 1.78
wuthering 0 0 2.58

(To simplify this example, we don’t do idf weighting.)

Hahsler (SMU) CSE 7/5337 Spring 2012 59 / 67

Cosine: Example

log frequency weighting

term SaS PaP WH

affection 3.06 2.76 2.30
jealous 2.0 1.85 2.04
gossip 1.30 0 1.78
wuthering 0 0 2.58

log frequency weighting
& cosine normalization

term SaS PaP WH

affection 0.789 0.832 0.524
jealous 0.515 0.555 0.465
gossip 0.335 0.0 0.405
wuthering 0.0 0.0 0.588

cos(SaS,PaP) ≈
0.789 ∗ 0.832 + 0.515 ∗ 0.555 + 0.335 ∗ 0.0 + 0.0 ∗ 0.0 ≈ 0.94.

cos(SaS,WH) ≈ 0.79

cos(PaP,WH) ≈ 0.69

Why do we have cos(SaS,PaP) > cos(SAS,WH)?

Hahsler (SMU) CSE 7/5337 Spring 2012 60 / 67

Computing the cosine score

CosineScore(q)
1 float Scores[N] = 0
2 float Length[N]
3 for each query term t
4 do calculate wt,q and fetch postings list for t
5 for each pair(d , tft,d) in postings list
6 do Scores[d]+ = wt,d × wt,q

7 Read the array Length
8 for each d
9 do Scores[d] = Scores[d]/Length[d]

10 return Top K components of Scores[]

Hahsler (SMU) CSE 7/5337 Spring 2012 61 / 67

Components of tf-idf weighting

Term frequency Document frequency Normalization

n (natural) tft,d n (no) 1 n (none)
1

l (logarithm) 1 + log(tft,d) t (idf) log N
dft

c (cosine)
1√

w2
1+w2

2+...+w2
M

a (augmented) 0.5 +
0.5×tft,d
maxt(tft,d)

p (prob idf) max{0, log N−dft
dft
} u (pivoted

unique)
1/u

b (boolean)

{
1 if tft,d > 0
0 otherwise

b (byte size) 1/CharLengthα,
α < 1

L (log ave)
1+log(tft,d)

1+log(avet∈d (tft,d))

Best known combination of weighting options

Default: no weighting

Hahsler (SMU) CSE 7/5337 Spring 2012 62 / 67

tf-idf example

We often use different weightings for queries and documents.

Notation: ddd.qqq

Example: lnc.ltn

document: logarithmic tf, no df weighting, cosine normalization

query: logarithmic tf, idf, no normalization

Isn’t it bad to not idf-weight the document?

Example query: “best car insurance”

Example document: “car insurance auto insurance”

Hahsler (SMU) CSE 7/5337 Spring 2012 63 / 67

tf-idf example: lnc.ltn

Query: “best car insurance”. Document: “car insurance auto insurance”.

word query document product
tf-raw tf-wght df idf weight tf-raw tf-wght weight n’lized

auto 0 0 5000 2.3 0 1 1 1 0.52 0
best 1 1 50000 1.3 1.3 0 0 0 0 0
car 1 1 10000 2.0 2.0 1 1 1 0.52 1.04
insurance 1 1 1000 3.0 3.0 2 1.3 1.3 0.68 2.04

Key to columns: tf-raw: raw (unweighted) term frequency, tf-wght: logarithmically weighted term
frequency, df: document frequency, idf: inverse document frequency, weight: the final weight of the term
in the query or document, n’lized: document weights after cosine normalization, product: the product of
final query weight and final document weight
√

12 + 02 + 12 + 1.32 ≈ 1.92
1/1.92 ≈ 0.52
1.3/1.92 ≈ 0.68

Final similarity score between query and document:
∑

i wqi · wdi = 0 + 0 + 1.04 + 2.04 = 3.08

Questions?

Hahsler (SMU) CSE 7/5337 Spring 2012 64 / 67

Summary: Ranked retrieval in the vector space model

Represent the query as a weighted tf-idf vector

Represent each document as a weighted tf-idf vector

Compute the cosine similarity between the query vector and each
document vector

Rank documents with respect to the query

Return the top K (e.g., K = 10) to the user

Hahsler (SMU) CSE 7/5337 Spring 2012 65 / 67

Take-away today

Ranking search results: why it is important (as opposed to just
presenting a set of unordered Boolean results)

Term frequency: This is a key ingredient for ranking.

Tf-idf ranking: best known traditional ranking scheme

Vector space model: One of the most important formal models for
information retrieval (along with Boolean and probabilistic models)

Hahsler (SMU) CSE 7/5337 Spring 2012 66 / 67

Resources

Chapters 6 and 7 of IIR

Resources at http://ifnlp.org/ir
I Vector space for dummies
I Exploring the similarity space (Moffat and Zobel, 2005)
I Okapi BM25 (a state-of-the-art weighting method, 11.4.3 of IIR)

Hahsler (SMU) CSE 7/5337 Spring 2012 67 / 67

http://ifnlp.org/ir

	Recap
	Why ranked retrieval?
	Term frequency
	tf-idf weighting
	The vector space model

